The Amplification of Monetary Shocks in HANK

Felipe Alves Greg Kaplan Ben Moll Gianluca Violante

CNB
30 May 2019
In preparation for JMCB 50th birthday issue
A recent trend

- Monetary macro meets heterogeneous-agent macro
A recent trend

- Monetary macro meets heterogeneous-agent macro

- Fraction of speeches at Central Banks and Feds mentioning at least once the words: heterogeneous, heterogeneity, inequality

Source: BIS database of central bankers’ speeches
A recent trend

- Monetary macro meets heterogeneous-agent macro

- Fraction of speeches at Central Banks and Feds mentioning at least once the words: heterogeneous, heterogeneity, inequality

Source: BIS database of central bankers’ speeches

Alves, Kaplan, Moll and Violante (2019)
Emerging new framework

- HA + NK: Aiyagari meets Gali-Woodford
Emerging new framework

• HA + NK: Aiyagari meets Gali-Woodford

• Attractive for at least three reasons:

 1. **Conceptually**, unified framework to study:
 • Short-run fluctuations and long-run dynamics of distribution
 • Stabilization and redistributive policies
 • Aggregate demand channel ⇒ importance of MPC

 2. **Empirically**, unified approach to micro and macro data

 3. **Technically**, now easier and faster to solve these models

Alves, Kaplan, Moll and Violante (2019)
Transmission mechanism of monetary shock

- **RA+NK**: direct intertemporal substitution effect

Qualitatively, many forces matter for amplification:

- **Income incidence**: heterogeneous exposure of y to Y
- **Fiscal response**: timing and distribution of government budget constraint
- **Profit distribution**: distribution and liquidity of profit income
- **K adjustment cost**: response of investment amplifies indirect GE effects

This paper: a quantitative assessment
Transmission mechanism of monetary shock

- **RA+NK**: direct intertemporal substitution effect

- **HA+NK**: indirect general equilibrium effects due to high MPC

Qualitatively, many forces matter for amplification:

- **Income incidence**: heterogeneous exposure of y to Y
- **Fiscal response**: timing and distribution government budget constraint
- **Profit distribution**: distribution and liquidity of profit income
- **K adjustment cost**: response of investment amplifies indirect GE effects

This paper: a quantitative assessment

Alves, Kaplan, Moll and Violante (2019)
Transmission mechanism of monetary shock

• **RA+NK**: direct intertemporal substitution effect

• **HA+NK**: indirect general equilibrium effects due to high MPC

 • **Qualitatively**, many forces matter for amplification:
 - **Income incidence**: heterogeneous exposure of y to Y
 - **Fiscal response**: timing and distribution government budget constraint
 - **Profit distribution**: distribution and liquidity of profit income
 - **K adjustment cost**: response of investment amplifies indirect GE effects

This paper: a quantitative assessment

Alves, Kaplan, Moll and Violante (2019)
Transmission mechanism of monetary shock

• RA+NK: direct intertemporal substitution effect

• HA+NK: indirect general equilibrium effects due to high MPC

• **Qualitatively**, many forces matter for amplification:

 • **Income incidence**: heterogeneous exposure of y to Y

 • **Fiscal response**: timing and distribution government budget constraint

 • **Profit distribution**: distribution and liquidity of profit income

 • **K adjustment cost**: response of investment amplifies indirect GE effects

• **This paper**: a quantitative assessment
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Households: Simplified Version

- Continuum of households each solving the problem:

$$\max_{\{c_{it}, d_{it}\}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\zeta)t} \log(c_{it}) \, dt$$

subject to

$$\dot{b}_{it} = w_t z_{it} \eta_{it} + r_t^b b_{it} - c_{it} - d_{it} - \chi(d_{it}, a_{it})$$

$$\dot{a}_{it} = r_t^a a_{it} + d_{it}$$

$$b_{it} \geq 0, \quad a_{it} \geq 0$$
Continuum of households each solving the problem:

\[
\max_{\{c_{it}, d_{it}\}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\zeta)t} \log(c_{it}) \, dt
\]

subject to

\[
\dot{b}_{it} = (1 - \tau_t) w_t \Gamma_N(z_{it}, \eta_{it}, N_t) + r^b_t b_{it} + (1 - \alpha) z_{it} \eta_{it} \prod_{t}^m
\]
\[
+ \Gamma_T(z_{it}, T_t) - c_{it} - d_{it} - \chi(d_{it}, a_{it})
\]
\[
\dot{a}_{it} = r^a_t a_{it} + d_{it}
\]
\[
b_{it} \geq 0, \quad a_{it} \geq 0
\]
Incidence functions

- Exogenous rules that allocate (N, T) across households

- Functional form for labor income incidence

\[
\Gamma_N(z, \eta, N) = \frac{z \eta(N/\bar{N}) \gamma_n(z)}{\int z' \eta'(N/\bar{N}) \gamma_n(z') d\mu} N \quad \text{with} \quad \int z \eta \gamma_n(z) d\bar{\mu} = 1
\]

- This satisfies

\[
\Gamma_N(z, \eta, \bar{N}) = z \eta \bar{N}, \quad \frac{\partial \log \Gamma_N(z, \eta, \bar{N})}{\partial \log N} = \gamma_n(z)
\]

- Similar functional form for T incidence function
Asset markets

Liquid asset b

- Real government bonds $\rightarrow \int b_t d\mu_t + B_t^g = 0$

Illiquid asset a

- Equity of an investment fund:
 $$A_0 = \max_{\nu_t} \int_0^\infty e^{-\int_0^t r_s^a ds} \left\{ \left[r_t^k - \nu_t - \Phi(\nu_t) \right] K_t + \alpha \Pi_t^m \right\} dt$$

 s.t.
 $$\dot{K}_t = (\nu_t - \delta) K_t$$

- Tobin’s q: $q_t^k = 1 + \Phi'(\nu_t)$

- Market clearing: $A_t = q_t^k K_t + q_t^m = \int a_t d\mu_t$

Alves, Kaplan, Moll and Violante (2019)
Monopoly profits

- Monopolistic producers of intermediate goods
 - Rent capital from fund and labor services from households
 - Produce with Cobb-Douglas production function, capital share = α
 - Quadratic price adjustment costs à la Rotemberg (1982) \Rightarrow Phillips curve

Counterfactual implications of countercyclical profits:
- If reinvested in the fund, dampen I_t in a boom
- If paid to liquid account, reduce household income in boom

Baseline: fraction paid in the illiquid account neutralize fluctuations of $m_t + k_t = [m_t Y_t + (1 - m_t) Y_t] = Y_t$
Monopoly profits

- Monopolistic producers of intermediate goods
 - Rent capital from fund and labor services from households
 - Produce with Cobb-Douglas production function, capital share = α
 - Quadratic price adjustment costs à la Rotemberg (1982) ⇒ Phillips curve

- Counterfactual implications of countercyclical profits:
 - If reinvested in the fund ⇒ dampen I_t in a boom
 - If paid to liquid account ⇒ reduce household income in boom

- Baseline: fraction α paid in the illiquid account ⇒ neutralize fluctuations of mc_t

$$r_t^k K_t + \alpha \Pi_t^m = \alpha [mc_t Y_t + (1 - mc_t)Y_t] = \alpha Y_t$$

Alves, Kaplan, Moll and Violante (2019)
Labor market

- Aggregate labor demand schedule (from optimization):
 \[mc_t F_N(K_t, N_t) = w_t \]

- Real wage setting (ad-hoc)
 \[w_t = \bar{w} \left(\frac{N_t}{\bar{N}} \right)^\varepsilon \]

- Aggregate labor input \(N_t \) is demand determined:
 \[mc_t F_N(K_t, N_t) = \bar{w} \left(\frac{N_t}{\bar{N}} \right)^\varepsilon \]

- Incidence function \(\Gamma_N \) allocates \(N_t \) across households
Government

Fiscal Authority

- Issues liquid debt \((B^g)\), spends \((G)\), taxes \((\tau)\) and transfers \((T)\)

\[
B^g_t + G_t + T_t = \tau w_t N_t + r_t^b B^g_t
\]

Monetary Authority

- Sets nominal rate on liquid assets based on the Taylor rule:

\[
i_t = \bar{r}_t^b + \phi \pi_t + \epsilon_t
\]

Alves, Kaplan, Moll and Violante (2019)
Outline

1. Model

2. Stationary Equilibrium
 - Parameterization
 - Distributions
 - Monetary Transmission

3. What Matters for Amplification?
 - Income Incidence
 - Fiscal Policy
 - Profit Distribution

4. Conclusion

Alves, Kaplan, Moll and Violante (2019)
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Parameters → moments

- Earnings dynamics → panel data evidence

- Discount factor → A/Y ratio (3)

- Transaction cost function (3 parameters) →
 - B/Y ratio (0.2)
 - Share of total hand to mouth households (0.31)
 - Share of wealthy hand to mouth households (0.25)

- $I_{\text{adj. cost}}$ → relative elast. of I to Y after monetary shock (2)

- Elasticity of w to N after monetary shock (0.10)

Alves, Kaplan, Moll and Violante (2019)
1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Model liquid and illiquid wealth distributions

- **Top**: very skewed wealth distribution (Gini \(\approx 0.84\))
- **Bottom**: share of hand-to-mouth households as in the data
MPC heterogeneity (windfall of $500)

• Aggregate quarterly MPC out of $500 rebate: 15%
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification ?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Monetary shock (25 BP)

Without capital adj. cost With capital adj. cost

- Relative volatility of C, I in line with the data
Transmission mechanism of a monetary shock

Without capital adj. cost With capital adj. cost

• Indirect GE effects important, more so when \(l \) moves by more
• Without capital adjustment costs, dividend movements account have negative effect
Transmission mechanism across the b distribution

- Indirect and direct effect have different relative importance for households at different parts of the liquid wealth distribution
Outline

1. Model

2. Stationary Equilibrium
 - Parameterization
 - Distributions
 - Monetary Transmission

3. What Matters for Amplification?
 - Income Incidence
 - Fiscal Policy
 - Profit Distribution

4. Conclusion
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Understanding role of incidence for amplification

- Recent papers emphasize potential importance of unequal incidence of aggregate income dynamics on individual income (Patterson (2019), Auclert (2018))

- Logic: Larger GE effects when high MPC households are more exposed to \(Y \) movements

- Aggregate consumption response to a change in aggregate income \(dY = \mathbb{E}_i[dy_i] \):

\[
dC = \mathbb{E}_i[MPC_i \cdot dy_i] \\
= E_i[MPC_i] dY + Cov_i \left(MPC_i, \gamma_i \frac{Y_i}{Y} \right) dY
\]
Understanding role of incidence for amplification

• Recent papers emphasize potential importance of unequal incidence of aggregate income dynamics on individual income (Patterson (2019), Auclert (2018))

• Logic: Larger GE effects when high MPC households are more exposed to Y movements

• Aggregate consumption response to a change in aggregate income $dY = \mathbb{E}_i [dy_i]$:

$$dC = \mathbb{E}_i [MPC_i \cdot dy_i]$$

$$= E_i [MPC_i] dY + Cov_i \left(MPC_i, \gamma_{yi} \frac{Y_i}{Y} \right) dY$$

• Two ingredients:
 1. Incidence functions: elasticities γ_{yi}
 2. Covariance of elasticities with with MPCs
Estimating incidence functions

• CPS 1967-2017: all individuals aged 26-55

• Construct persistent component of each type of income:
 • Project earnings on age, gender, race, marital status, education, occupation with interactions, by year \((R^2 \approx 0.4) \) \(\Rightarrow \) divide sample of fitted values \((z_i)\) into 50 quantiles
Estimating incidence functions

- CPS 1967-2017: all individuals aged 26-55

- Construct **persistent component** of each type of income:

 - Project earnings on age, gender, race, marital status, education, occupation with interactions, by year \(R^2 \approx 0.4 \) ⇒ divide sample of fitted values \(z_i \) into 50 quantiles

- **Labor income**: wage compensation + 2/3 self. employment

- **Capital income**: interests + dividends + rents + 1/3 self. employment

- **Govt income**: all transfers (UI, TANF, SNAPs, SSI, etc.)
Estimating incidence functions

- CPS 1967-2017: all individuals aged 26-55
- Construct **persistent component** of each type of income:
 - Project earnings on age, gender, race, marital status, education, occupation with interactions, by year \(R^2 \simeq 0.4 \) \(\Rightarrow \) divide sample of fitted values \(z_i \) into 50 quantiles
- **Labor income**: wage compensation + 2/3 self. employment
- **Capital income**: interests + dividends + rents + 1/3 self. employment
- **Govt income**: all transfers (UI, TANF, SNAPS, SSI, etc.)
- For each quantile of \(z \), regress:
 \[
 \log y_{it} = \beta_0(z) + \gamma_y(z) \cdot \log Y_t + \beta_1(z) \cdot t + \epsilon_t
 \]

Alves, Kaplan, Moll and Violante (2019)
Estimating incidence functions

- CPS 1967-2017: all individuals aged 26-55

- Construct persistent component of each type of income:
 - Project earnings on age, gender, race, marital status, education, occupation with interactions, by year ($R^2 \approx 0.4$) ⇒ divide sample of fitted values (z_i) into 50 quantiles

- Labor income: wage compensation + 2/3 self. employment

- Capital income: interests + dividends + rents + 1/3 self. employment

- Govt income: all transfers (UI, TANF, SNAP, SSI, etc.)

- Zeros are 100 times more frequent at P1 than at P100 ⇒ regress:

 $$\text{asinh}(y_{it}) = \beta_0(z) + \gamma_y(z) \cdot \log Y_t + \beta_1(z) \cdot t + \epsilon_t$$

Alves, Kaplan, Moll and Violante (2019)
Elasticities: labor income

- Guvenen, Schulhofer-Wohl, Yogo (2017): U-shape at high end in SSA data w/o top coding

Alves, Kaplan, Moll and Violante (2019)
Approximation of labor incidence function for model
Elasticities: government income

- Similar, except at bottom 10% (to whom 20% of T are allocated)

Alves, Kaplan, Moll and Violante (2019)
Approximation of government incidence function for model
How incidence covaries with MPCs

- Share of HtM household by permanent income in model and data
- MPC highly correlated with HtM

Alves, Kaplan, Moll and Violante (2019)
Monetary shock with unequal labor incidence

Without capital adj. cost With capital adj. cost

• Smaller differences with capital adjustment costs
Relation to Patterson (2019)

- Patterson (2019): unequal incidence amplifies GE multiplier by 40%

- Q: How to square with our findings? A: What one means by ‘amplify’

- Patterson: multiplier with (without) unequal incidence is $1.42 (1.3) \Rightarrow 0.42/0.3 - 1 = 40$

- Our findings consistent: blowing up our equal incidence IRF by $1.42/1.3$ yields approximately our estimated incidence IRF
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Fiscal adjustment after monetary expansion

\[\dot{B}_t^g + G_t + T_t = \tau w_t N_t + r_t^b B_t^g \]

- Failure of Ricardian equivalence: timing of tax or transfer adjustment matters
- Short-run adjustment in the government budget constraint:
 - Debt \((B_t^g)\) falls
 - Transfers \((T_t)\) rise
 - Expenditures \((G_t)\) rise

Alves, Kaplan, Moll and Violante (2019)
Fiscal adjustment after monetary expansion

Without capital adj. cost With capital adj. cost
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Profit distribution out of steady-state

- Generalized function for profit distributions into liquid account:

\[z_{it} \eta_{it} \left[(1 - \alpha) \bar{\Pi}^m + (1 - \omega)(\Pi_t^m - \bar{\Pi}^m) \right] \]

- Compare four alternative versions profit deviations from steady state \(\Pi_t^m - \bar{\Pi}^m \):
 1. Same as in steady-state (baseline): \(\omega = \alpha \Rightarrow z_{it} \eta_{it} (1 - \alpha) \Pi_t^m \)
 2. All into liquid: \(\omega = 0 \)
 3. All into illiquid: \(\omega = 1 \)
 4. All into liquid, but equally distributed

- Trade-off between cyclicality of household income and cyclicality of investment
Profit distribution out of steady-state

Without capital adj. cost With capital adj. cost

- Without capital adjustment costs, profit distribution matters because it affects / which in turn affects size of indirect GE effects
Outline

1. Model

2. Stationary Equilibrium
 Parameterization
 Distributions
 Monetary Transmission

3. What Matters for Amplification?
 Income Incidence
 Fiscal Policy
 Profit Distribution

4. Conclusion
Taking stock, so far

- Quantitative assessment of various sources of shock amplification in HANK
 - Income incidence
 - Fiscal policy
 - Profit distribution

Main takeways: all three matter for C. Relative importance: Alves, Kaplan, Moll and Violante (2019)
Taking stock, so far

- Quantitative assessment of various sources of shock amplification in HANK
- **Main takeways:** all three matter for C.
 - Income incidence
 - Fiscal policy
 - Profit distribution

Alves, Kaplan, Moll and Violante (2019)
Taking stock, so far

• Quantitative assessment of various sources of shock amplification in HANK

• **Main takeways**: all three matter for C. Relative importance:
 1. Fiscal policy
 2. Profit distribution
 3. Income incidence

Alves, Kaplan, Moll and Violante (2019)
Taking stock, so far

• Quantitative assessment of various sources of shock amplification in HANK

• Main takeways: all three matter for C. Relative importance:
 1. Fiscal policy
 2. Profit distribution
 3. Income incidence

• All of these: in RANK, either unimportant or cannot even think about

• HANK opens up door to doing so