Non-Durable Consumption and Housing Net Worth in the Great Recession: Evidence from Easily Accessible Data

Greg Kaplan
University of Chicago

Kurt Mitman
IIES

Gianluca Violante
New York University

New Perspectives on Consumption
• Boom and bust in house prices

• Boom and bust in non-durable consumption
Background

• U.S. Great Recession 07-09

 ▶ Sharp drop in house prices p_h (~ 30 pct)

 ▶ Durable C' expenditures tanked, as in every recessions

 ▶ Unusually large drop in non-durable consumption (ND-C)
Background

- U.S. Great Recession 07-09
 - Sharp drop in house prices p_h (\sim30 pct)
 - Durable C expenditures tanked, as in every recessions
 - Unusually large drop in non-durable consumption (ND-C)
- Causal link between p_h and ND-C? How large is this elasticity?
Background

• U.S. Great Recession 07-09
 ▶ Sharp drop in house prices p_h (\sim30 pct)
 ▶ Durable C expenditures tanked, as in every recessions
 ▶ Unusually large drop in non-durable consumption (ND-C)

• Causal link between p_h and ND-C? How large is this elasticity?

• Answer relevant for:
 ▶ Consumption insurance
 ▶ Sources of aggregate fluctuations
 ▶ Policies that mitigate welfare costs of business cycles
Widely cited answer

- Mian, Rao and Sufi (QJE, 2012)
 - The relationship is causal (IV approach)
 - The elasticity of non-durable consumption to changes in the housing share of net worth (HNW shock) is 0.36
Widely cited answer

• Mian, Rao and Sufi (QJE, 2012)
 ▶ The relationship is causal (IV approach)
 ▶ The elasticity of non-durable consumption to changes in the housing share of net worth (HNW shock) is 0.36

• Methodology:
 ▶ Geographical (county-level) variation
 ▶ Instrument: Saiz (2010) local housing supply elasticities
 ▶ p_n data: CoreLogic & ND-C data: MasterCard
Widely cited answer

- Mian, Rao and Sufi (QJE, 2012)
 - The relationship is causal (IV approach)
 - The elasticity of non-durable consumption to changes in the housing share of net worth (HNW shock) is 0.36

- Methodology:
 - Geographical (county-level) variation
 - Instrument: Saiz (2010) local housing supply elasticities
 - \(p_h \) data: CoreLogic & ND-C data: MasterCard

- Limitation: proprietary data, not replicable
Our contributions

1. Replicate the MRS analysis with (more) easily accessible data and confirm MRS estimates

 • p_h data: Zillow & ND-C data: Kilts-Nielsen Retail Scanner
Our contributions

1. Replicate the MRS analysis with (more) easily accessible data and confirm MRS estimates

 • p_h data: Zillow & ND-C data: Kilts-Nielsen Retail Scanner

2. Separation of price and quantity effect in expenditures

 • 1/5 of drop in expenditures due to lower prices
Our contributions

1. Replicate the MRS analysis with (more) easily accessible data and confirm MRS estimates
 - p_h data: Zillow & ND-C data: Kilts-Nielsen Retail Scanner

2. Separation of price and quantity effect in expenditures
 - 1/5 of drop in expenditures due to lower prices

3. Use CEX Diary to infer elasticity for Total ND-C
 - Elasticity of Total ND-C to Δp_h is 20 pct lower than that of Kilts-Nielsen bundle
DATA
Expenditure data

- Kilts-Nielsen Retail Scanner Data (KNRS)
 - Weekly panel dataset of sales for over 30,000 stores affiliated with about 90 participating retail chains across 55 MSA geographically dispersed across the US
 - Information on both quantity sold and price charged per unit at UPC (barcode) level
 - Construct an annual store-level panel of sales
Expenditure data

- **Kilts-Nielsen Retail Scanner Data (KNRS)**
 - Weekly panel dataset of sales for over 30,000 stores affiliated with about 90 participating retail chains across 55 MSA geographically dispersed across the US
 - Information on both quantity sold and price charged per unit at UPC (barcode) level
 - Construct an annual store-level panel of sales

- **Store-switching a problem?**
 - For continuing stores, not an issue
 - Shoppers switching from exiting to surviving stores: attenuation bias
Coverage

<table>
<thead>
<tr>
<th>Category</th>
<th>All Stores (2006)</th>
<th>Baseline Sample (2006-09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry grocery</td>
<td>37%</td>
<td>37%</td>
</tr>
<tr>
<td>Frozen foods</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Dairy</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Deli</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Packaged meat</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Fresh produce</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Non-food grocery</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Alcohol</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Health and beauty aids</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>General merchandise</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>Number of stores</td>
<td>31,093</td>
<td>14,756</td>
</tr>
</tbody>
</table>

- Bundle composed mostly of groceries, cosmetic, and drugs
Correlation with NIPA PCE in ND goods and services

- Exclude gasoline and energy from NIPA PCE

- State-level correlation in 06-09 nominal sales growth: 0.54
Net Worth data

\[NW_t^i = H_t^i + F_t^i - M_t^i - D_t^i \]

- Financial assets \(F \): as in MRS, we allocate financial assets in FoF proportionally to the interests and dividend income from county-level IRS-Statistics of Income

- Mortgage debt \(M \) and other debt \(D \): as in MRS, we use Equifax data underlying the FRB-NY Consumer Credit Panel

- Housing \(H \): compute number of houses by county from ACS, and multiply by Zillow Home Value Index for All Homes

- Aggregate all at CBSA level (level of Saiz instrument)
• 929 Core Based Statistical Areas (Metro SA + Micro SA)
CoreLogic vs Zillow House Price Indexes

- **CoreLogic**: repeat-sale index
- **Zillow**: hedonic price index, includes new constructions
METHODOLOGY
Regression specification

- Housing net-worth shock:

\[\Delta HNW_{06-09} = \Delta \log p_{06-09} \times \left(H_{06}^i / NW_{06}^i \right) \]

- MRS statistical model:
 - First stage:

\[\Delta HNW_{06-09} = \alpha_0 + \alpha_1 SaizElast^i + \eta_{06-09} \]

 - Second stage:

\[\Delta \log C_{06-09}^{s,i} = \beta_0 + \beta_1 \Delta HNW_{06-09}^i + \epsilon_{06-09}^{s,i} \]

- Weight obs. by store sales in 06 & cluster S.E. at CBSA level
A visual of the first stage

- Nonlinear relationship

- We use a quartic in the Saiz-elasticity in the first stage
Elasticity of ND expenditures to HNW shock

<table>
<thead>
<tr>
<th>Dep. var: $\Delta \log C^{s,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBSA 2006-09</td>
</tr>
<tr>
<td>OLS</td>
</tr>
<tr>
<td>IV (linear)</td>
</tr>
<tr>
<td>ΔHNW^i</td>
</tr>
<tr>
<td>0.239**</td>
</tr>
<tr>
<td>(0.029)</td>
</tr>
<tr>
<td>0.361**</td>
</tr>
<tr>
<td>(0.077)</td>
</tr>
<tr>
<td>0.405**</td>
</tr>
<tr>
<td>(0.089)</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>14,756</td>
</tr>
<tr>
<td>12,701</td>
</tr>
<tr>
<td>12,701</td>
</tr>
<tr>
<td>Clusters</td>
</tr>
<tr>
<td>281</td>
</tr>
<tr>
<td>181</td>
</tr>
<tr>
<td>181</td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>0.024</td>
</tr>
<tr>
<td>0.017</td>
</tr>
<tr>
<td>0.012</td>
</tr>
</tbody>
</table>

- Remarkably similar to MRS estimate of 0.34-0.38 in spite of different data on ND-C and house prices
A structural interpretation of this elasticity β_1

- Life-cycle model with: $\beta(1 + r) = 1$, Cobb-Douglas $u(c, h)$, deterministic income path, no borr. constraints, no trans. costs
- Elasticity of C to a permanent unexpected change in p^h:

$$\frac{\Delta C_{it}/C_{it}}{\Delta p^h_{it}/p^h_{it}} = \frac{H_{it}}{\sum_{\tau=t}^{T} \left(\frac{1}{1+r} \right)^{\tau-t} y_{i\tau} + H_{it} + A_{it}}$$
A structural interpretation of this elasticity β_1

- Life-cycle model with: $\beta(1 + r) = 1$, Cobb-Douglas $u(c, h)$, deterministic income path, no borr. constraints, no trans. costs
- Elasticity of C to a permanent unexpected change in p^h:

$$\frac{\Delta C_{it}/C_{it}}{\Delta p_{it}^h/p_{it}^h} = \frac{H_{it}}{\sum_{\tau=t}^{T} \left(\frac{1}{1+r} \right)^{\tau-t} y_{i\tau} + H_{it} + A_{it}}$$

$$\Delta \log C_{it} = \left[\frac{H_{it} + A_{it}}{\sum_{\tau=t}^{T} \left(\frac{1}{1+r} \right)^{\tau-t} y_{i\tau} + H_{it} + A_{it}} \right] \times \Delta \log p_{it}^h \left(\frac{H_{it}}{H_{i,t} + A_{it}} \right)$$

- Similar to income pass-through coeff. of Blundell et al. (2008)
Consumption vs Expenditures

Dep. var: $\Delta \log C^{s,i}_{\text{real}}$

<table>
<thead>
<tr>
<th>CBSA, 2006-09</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
</table>

ΔHNW^i & 0.196** & 0.298**

(0.026) & (0.085) &

| N | 14,756 | 12,701 |
| Clusters | 281 | 181 |

R^2 & 0.016 & 0.012 |

- Nominal expenditures deflated through Paasche index
- 20 pct of drop in nominal exp. due to lower prices (0.30 vs 0.36)
From Kilts-Nielsen bundle to Total ND-C

- Wish to translate estimated elasticity in terms of Total ND-C
- Use CE Diary Survey (Attanasio-Battistin-Ichimura, 05) where items in KN bundle are better measured

\[
\log c_{it}^{ND} = D_t + \beta'_0 X_{it} + \beta_1 \log c_{it}^{KN} + \epsilon_{it}
\]

where \(X\): equivalence scale, family type, age, edu, race, region
From Kilts-Nielsen bundle to Total ND-C

• Wish to translate estimated elasticity in terms of Total ND-C

• Use CE Diary Survey (Attanasio-Battistin-Ichimura, 05) where items in KN bundle are better measured

\[
\log c_{it}^{ND} = D_t + \beta'_0 X_{it} + \beta_1 \log c_{it}^{KN} + \varepsilon_{it}
\]

where \(X \): equivalence scale, family type, age, edu, race, region

• NIPA ND goods (excl. energy): KN goods + clothing and footwear, tobacco, books, newspaper and magazines

• NIPA ND goods & services: ND goods + food away from home, clothing services, entertainment, communication, and transportation services
From Kilts-Nielsen bundle to Total ND-C

- Wish to translate estimated elasticity in terms of Total ND-C
- Use CE Diary Survey (Attanasio-Battistin-Ichimura, 05) where items in KN bundle are better measured

\[
\log c_{it}^{ND} = D_t + \beta'_0 X_{it} + \beta_1 \log c_{it}^{KN} + \varepsilon_{it}
\]

where \(X \): equivalence scale, family type, age, edu, race, region

- NIPA ND goods (excl. energy): KN goods + clothing and footwear, tobacco, books, newspaper and magazines
- NIPA ND goods & services: ND goods + food away from home, clothing services, entertainment, communication, and transportation services
- Result: elasticity of total ND to KN bundle is 0.7 – 0.9
Elasticity of ND expenditures to housing wealth

Dep. var: $\Delta \log C_{s,i}$

<table>
<thead>
<tr>
<th></th>
<th>CBSA 2006-09</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>$\Delta \log H^i$</td>
<td>0.124**</td>
<td>0.183**</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>$\Delta \log (H^i - M^i)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>14,756</td>
<td>12,701</td>
</tr>
<tr>
<td>Clusters</td>
<td>281</td>
<td>181</td>
</tr>
<tr>
<td>R^2</td>
<td>0.021</td>
<td>0.017</td>
</tr>
</tbody>
</table>

- More intuitive elasticities
- Elast. wrt to housing equity smaller b/c changes are larger
Taking stock

• Replication of MRS based on alternative and more accessible data largely confirmed their empirical findings

• Useful ‘moment’ to match to validate structural models
Taking stock

• Replication of MRS based on alternative and more accessible data largely confirmed their empirical findings

• Useful ‘moment’ to match to validate structural models

• Our preferred way to state the key quantitative finding:

1. The elasticity of total real ND exp. to housing equity is \(0.08\)

2. Given an aggregate drop in housing equity of 50 pct, the implied drop in aggregate ND-C is 4% (half of the total)

3. Corresponding annual MPC for ND-C out of housing equity is:

\[
\frac{\Delta C_t}{C_t} = 0.08 \times \frac{\Delta H^e_t}{H^e_t} \rightarrow MPC_{H^e} = 0.08 \times \left(\frac{C_t}{H^e_t} \right) = 0.03
\]

\(\sim 0.37\)
THANK YOU!