Search and Work in Optimal Welfare Programs

Nicola Pavoni
Universita’ Bocconi, and IFS

Ofer Setty
Tel Aviv University

Gianluca Violante
New York University, CEPR, and NBER

Labour Markets and the Welfare State
IFS – June 19, 2012
Introduction

• Social expenditures on labor market programs targeted to poor/out-of-work in OECD countries: 1.7% of GDP in 2009
Introduction

- Social expenditures on labor market programs targeted to poor/out-of-work in OECD countries: 1.7% of GDP in 2009

- Programs include a mix of policy instruments
 - Social Assistance
 - Unemployment Insurance (≠ degrees of monitoring)
 - Job-search Assistance (training and placement)
 - Transitional Work: “stepping stone” to private sector job
 - Mandatory Work: “work in exchange for welfare”
 - Training
 - Earnings subsidies/re-employment incentives
Question and language

Broad question: how to optimally design a welfare program
Question and language

Broad question: how to optimally design a welfare program

- A policy is a prescription of an activity (search, work, train, or rest) to the participant, with an associated conditional transfer

- A welfare program is a government expenditure program that combines different policies

- An optimal welfare program maximizes the unemployed agent ex-ante utility, for a given level of government expenditures

Focus: how to combine search-based & work-based policies
Approach

- Dynamic contracting framework
 - hidden actions (as in the optimal UI literature)
Approach

- Dynamic contracting framework
 - hidden actions (as in the optimal UI literature)
 - human capital
 - additional technologies \rightarrow activity of the participant \rightarrow policy
Approach

• Dynamic contracting framework
 ▶ hidden actions (as in the optimal UI literature)
 ▶ human capital
 ▶ additional technologies → activity of the participant → policy

• Solution to the insurance-incentive trade off:
 ▶ Optimal sequence of policies along the unemployment spell
 ▶ Optimal sequence of payments
 – benefits during unemployment
 – subsidies/taxes upon re-employment
1. Economic Environment
Preferences, endowments and markets

• Agent is infinitely lived, discounts future at rate β

• Intra-period utility: $u(c) - e \cdot a$

 ▶ Separable in consumption c and effort $a \in \{0, 1\}$

 ▶ $u(\cdot)$ increasing, strictly concave, smooth, unbounded below, and u^{-1} has convex first derivative (Newman, 2007)
Preferences, endowments and markets

• Agent is infinitely lived, discounts future at rate β

• Intra-period utility: $u(c) - e \cdot a$

 ▶ Separable in consumption c and effort $a \in \{0, 1\}$

 ▶ $u(\cdot)$ increasing, strictly concave, smooth, unbounded below, and u^{-1} has convex first derivative (Newman, 2007)

• Agent endowed with initial human capital h_0
Preferences, endowments and markets

• Agent is infinitely lived, discounts future at rate β

• Intra-period utility: $u(c) - e \cdot a$

 ▶ Separable in consumption c and effort $a \in \{0, 1\}$

 ▶ $u(\cdot)$ increasing, strictly concave, smooth, unbounded below, and u^{-1} has convex first derivative (Newman, 2007)

• Agent endowed with initial human capital h_0

• Zero initial wealth, no access to insurance/credit markets
Production technologies

- Primary production (private sector)
 - Output is $\omega(h)$, ω increasing in h
 - Access to this technology is frictional
 - It is an absorbing state
Production technologies

- **Primary production (private sector)**
 - Output is $\omega(h)$, ω increasing in h
 - Access to this technology is frictional
 - It is an absorbing state

- **Secondary production (community service)**
 - Output is ω, independent of h
 - Access to this technology is frictionless, i.e. readily available
Production technologies

• Primary production (private sector)
 ▶ Output is $\omega(h)$, ω increasing in h
 ▶ Access to this technology is frictional
 ▶ It is an absorbing state

• Secondary production (community service)
 ▶ Output is ω, independent of h
 ▶ Access to this technology is frictionless, i.e. readily available

• Work activity requires effort $a = 1$ to be productive
Private search technology (for primary job)

- Three stages:

1. **Applications**: \(a \cdot \eta(h) \), with \(\eta(h) \) available job opportunities

2. **Contact**: probability \(\mu \) of being recontacted by firm

3. **Hire**: upon contact, prob. \(\theta(r) \) of being retained by firm, where worker’s action \(r \in \{0, 1\} \) and \(\theta(1) = \theta > \theta(0) = 0 \)

\[\Rightarrow \text{Job finding probability: } \pi(h, a, r) = \theta(r)[1 - (1 - \mu)^a \cdot \eta(h)] \]
Assisted search technology (for primary job)

• At cost κ, agency takes over search on behalf of participant

 ▶ Participant saves her search effort

 ▶ Agency sends out $\min \{\eta(h), \eta\}$ applications

• Hire still subject to worker’s retention action r

⇒ Job finding probability: $\lambda(h, r) = \theta(r)[1 - (1 - \mu)^{\min\{\eta(h), \eta\}}]$
Human capital depreciation

• Human capital *depreciates deterministically at rate* δ:
Human capital depreciation

- Human capital **depreciates deterministically at rate** δ:
 - wage depreciation since $\omega_h > 0$
 - decline in hazard rate since $\eta_h > 0$
Human capital depreciation

• Human capital depreciates deterministically at rate δ:

 ▶ wage depreciation since $\omega_h > 0$

 ▶ decline in hazard rate since $\eta_h > 0$

• Only primary employment stops depreciation

• Extension: training technology rebuilds human capital
Information structure

- **Observable and contractible:**
 - Initial type h_0
 - Work effort and output of production
 - Consumption
Information structure

• **Observable and contractible:**
 - Initial type h_0
 - Work effort and output of production
 - Consumption

• **Private information** of the agent and under her control:
 - Job-search effort
 - Retention action following a firm-worker contact
2. **Contract**
Principal-Agent relationship

The risk-neutral planner/government offers a contract that minimizes its expenditures, subject to delivering to the agent a given level of utility.
Principal-Agent relationship

The risk-neutral planner/government offers a contract that minimizes its expenditures, subject to delivering to the agent a given level of utility.

At every node, the contract specifies:

- **Activity**: private search, assisted search, secondary prod., rest
- **IC recommendations** on the effort level a and retention action r
- **Consumption** level:
 - welfare benefits during unemployment
 - wage taxes/subsidies during employment
Options of contract as policies of welfare program

• Combination of prescriptions on effort \(a\), retention action \((r = 1)\), and use of technologies leads to five policy instruments:

 ▶ **UI**: Unemployment Insurance (private search, \(a = 1\))

 ▶ **JA**: Job-search Assistance (assisted search, \(a = 0\))

 ▶ **MW**: Mandatory Work (secondary production, \(a = 1\))

 ▶ **TW**: Transitional Work (sec. prod. + assisted search, \(a = 1\))

 ▶ **SA**: Social Assistance (no use of technology, \(a = 0\))
Recursive formulation

- **State variables:**
 1. human capital $h \leftrightarrow$ duration d
 2. continuation utility U promised by the contract
Recursive formulation

• State variables:

1. human capital \(h \) \(\iff \) duration \(d \)

2. continuation utility \(U \) promised by the contract

• Initial conditions: \((h_0, U_0)\)

• For every pair \((h, U)\), the planner solves:

\[
V(U, h) = \max \{ V^{UI}(U, h), V^{JA}(U, h), V^{TW}(U, h), V^{MW}(U, h), V^{SA}(U, h) \}
\]

from \(V \) to \(V \) (concave) through lotteries
Unemployment Insurance (UI)

• The planner elicits search effort and retention action:

\[
V^{UI}(U, h) = \max_{c, U^s, U^f} -c + \beta \left[\pi(h)W(U^s, h') + (1 - \pi(h))V(U^f, h') \right]
\]

subject to :

\[
u(c) - e + \beta[\pi(h)U^s + (1 - \pi(h))U^f] \geq u(c) + \beta U^f \quad (IC - S)
\]

\[
U^s \geq U^f \quad (IC - R)
\]

\[
U = u(c) - e + \beta \left[\pi(h)U^s + (1 - \pi(h))U^f \right] \quad (PK)
\]

\[
h' = (1 - \delta)h
\]
Unemployment Insurance (UI)

• The planner elicits search effort and retention action:

\[
V^{UI}(U, h) = \max_{c, U^s, U^f} -c + \beta \left[\pi(h)W(U^s, h') + (1 - \pi(h)) V(U^f, h') \right]
\]

subject to:

\[
U^s - U^f \geq \frac{e}{\beta \pi(h)} \quad (IC - S)
\]

\[
U^s \geq U^f \quad (IC - R)
\]

\[
U = u(c) - e + \beta \left[\pi(h)U^s + (1 - \pi(h))U^f \right] \quad (PK)
\]

\[
h' = (1 - \delta)h
\]
Job-search Assistance (JA)

• The planner pays κ to save on effort and elicits retention action:

$$V^{J\!A}(U, h) = \max_{c, U^s, U^f} -c - \kappa + \beta \left[\lambda(\pi) W(U^s, h') + (1 - \lambda(\pi)) V(U^f, h') \right]$$

subject to:

$$U^s \geq U^f \quad (IC - R)$$

$$U = u(c) + \beta \left[\lambda(\pi) U^s + (1 - \lambda(\pi)) U^f \right] \quad (PK)$$

$$h' = (1 - \delta) h$$
3. PARAMETERIZATION
Parameterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility function</td>
<td>$u(c)$</td>
<td>log</td>
<td>Pavoni and Violante (2007)</td>
</tr>
<tr>
<td>Discount factor</td>
<td>β</td>
<td>0.9959</td>
<td>Annual interest rate 5 pct</td>
</tr>
<tr>
<td>Disutility from effort</td>
<td>e</td>
<td>0.67</td>
<td>Various sources</td>
</tr>
<tr>
<td>Labor market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial monthly earnings</td>
<td>h_0</td>
<td>$1,000$</td>
<td>NEWWS</td>
</tr>
<tr>
<td>Job search hazard</td>
<td>$\pi(h)$</td>
<td>Weibull</td>
<td>Monthly CPS (1995-1996)</td>
</tr>
<tr>
<td>Monthly depreciation</td>
<td>δ</td>
<td>0.0135</td>
<td>Various sources</td>
</tr>
<tr>
<td>Assisted search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job search hazard</td>
<td>λ</td>
<td>0.23</td>
<td>NEWWS, and Cebi and Woodbury (2011)</td>
</tr>
<tr>
<td>Administrative cost</td>
<td>κ</td>
<td>0.23</td>
<td>NEWWS, and Kirby et al. (2002)</td>
</tr>
<tr>
<td>Secondary production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output net of costs</td>
<td>ω</td>
<td>0.521</td>
<td>NEWWS, and Kirby et al. (2002)</td>
</tr>
</tbody>
</table>
4. RESULTS
Policy space
Policy space as phase diagram

Optimal Policies in the (U,h) Space

- UI
- JA
- TW
- MW

Promised Utility (U)

Human Capital (h)

11 10 9 8 7 6 5 4

Pavoni-Setty-Violante, "Search and Work in Optimal Welfare Programs"
Benefits and Wage Subsidies

Payments (replacement ratio)

Subsidy/tax upon re-employment

Pavoni-Setty-Violante, "Search and Work in Optimal Welfare Programs"
5. JOB-SEARCH MONITORING
Policy Space

Optimal Policies in the (U,h) Space

Promised Utility (U)

Human Capital (h)

JM

JA

UI

TW

SA

MW

Pavoni-Setty-Violante, "Search and Work in Optimal Welfare Programs"
Lessons

Policy: combination of technology and participant’s effort/actions

1. Estimation of technology parameters (costs and returns) is critical
 - without high effort, biased estimates
 - randomization useful
 - diff-in-diff does not measure returns of technology

2. Search-based vs work-based programs, depending on generosity
Lessons

Policy: combination of technology and participant’s effort/actions

1. Estimation of technology parameters (costs and returns) is critical
 - without high effort, biased estimates
 - randomization useful
 - diff-in-diff does not measure returns of technology

2. Search-based vs work-based programs, depending on generosity

3. Value of a policy affected by the presence of other policies

4. For example, wage subsidy key for the success of “low-effort" interventions which could lead to employment (like JA)
Lessons

Policy: combination of technology and participant’s effort/actions

1. Estimation of technology parameters (costs and returns) is critical
 - without high effort, biased estimates
 - randomization useful
 - diff-in-diff does not measure returns of technology

2. Search-based vs work-based programs, depending on generosity

3. Value of a policy affected by the presence of other policies

4. For example, wage subsidy key for the success of “low-effort” interventions which could lead to employment (like JA)
Lessons

Policy: combination of technology and participant’s effort/actions

1. Estimation of technology parameters (costs and returns) is critical
 - without high effort, biased estimates
 - randomization useful
 - diff-in-diff does not measure returns of technology

2. Search-based vs work-based programs, depending on generosity

3. Value of a policy affected by the presence of other policies

4. For example, wage subsidy key for the success of “low-effort" interventions which could lead to employment (like JA)
Digression: \(u^{-1} \) convex first derivative?

- \(\frac{1}{u'} \) is the marginal cost to the planner of promising an additional unit of utility \(U \) to the agent.

- **Definition [incentive cost]**: extra cost in units of consumption of promising the agent a state-contingent utility lottery delivering \(U \) necessary to satisfy IC, relative to the cost of promising \(U \) with certainty.

- If \(\frac{1}{u'} \) is convex, then the incentive cost is increasing in \(U \).

- CARA or CRRA (\(\gamma > 1/2 \)) \(\Rightarrow \frac{1}{u'} \) convex.
Markets

- **Benchmark model**: agents have no access to insurance and credit markets
Markets

- **Benchmark model**: agents have no access to insurance and credit markets

- **Extension**: agents can save with return $q^{-1} = \beta^{-1}$ but face a no-borrowing constraint

 - Same optimal contract as in the benchmark can be implemented with one additional instrument:

 - a linear *interest rate tax* large enough to keep the agent always at the borrowing constraint.
Social Assistance (SA)

- The worker is asked to rest, as the planner requires no effort in this period

- Pure income assistance policy:

\[
V^{SA}(U, h) = \max_{c,U^f} -c + \beta V(U^f, h')
\]

subject to:

\[
U = u(c) + \beta U^f
\]

\[
h' = (1 - \delta)h
\]

Pavoni-Setty-Violante, "Search and Work in Optimal Welfare Programs"
Mandatory Work (MW)

- The planner allocates the worker to the secondary production and elicits work effort:

\[V^{MW}(U, h) = \max_{c,U^f} \omega - c + \beta V(U^f, h') \]

subject to:

\[U = u(c) - e + \beta U^f \quad (PK) \]

\[h' = (1 - \delta)h \]
Transitional Work (TW)

- The planner combines secondary production with matching and elicits work effort and retention action:

\[
V^{TW}(U, h) = \max_{c, U^f, U^s} \omega - c - \kappa + \beta [\lambda(h)W(U^s, h') + (1 - \lambda(h))V(U^f, h')]
\]

subject to:

\[
U^s \geq U^f \quad (IC - R)
\]

\[
U = u(c) - e + \beta [\lambda(h)U^s + (1 - \lambda(h))U^f] \quad (PK)
\]

\[
h' = (1 - \delta)h
\]
Economic forces in the choice of policies

- **Effort compensation cost** (UI, TW, MW, & EMP): increasing in U
Economic forces in the choice of policies

- Effort compensation cost (UI, TW, MW, & EMP): increasing in U
- Returns to search (UI): increasing in h through (ω, π)
- Returns to matching (JA & TW): increasing in h through ω
Economic forces in the choice of policies

- **Effort compensation cost** (UI, TW, MW, & EMP): increasing in U
- **Returns to search** (UI): increasing in h through (ω, π)
- **Returns to matching** (JA & TW): increasing in h through ω
- **Incentive costs**

 \[
 \text{Search (UI): } U^s(U) - U^f(U) \geq \frac{\varepsilon}{\beta \pi(h)} \quad (\text{IC-S})
 \]

 \[
 \text{Retention (JA & TW): } U^s(U) \geq U^f(U) \quad (\text{IC-R})
 \]

 - **IC-S costs decreasing in h**
 - **Both IC-S and IC-R costs increasing in U**
Application: United States

• Federal legislation attributes to States power to administer/design welfare programs

• *National Evaluation of Welfare-to-Work Strategies (NEWWS)*: government-sponsored large-scale longitudinal study based on random assignment of 40,000 individuals between 1991-1999 in seven distinct U.S. locations

• Two sets of WTW programs with different features:
 - Labor Force Attachment (LFA): emphasis on work
 - Human Capital Developm. (HCD): emphasis on training